Integrated decision and control of human-engineered complex systems
نویسندگان
چکیده
This paper presents a comprehensive decision and control strategy for human-engineered complex systems to achieve simultaneously the following objectives: (i) high-performance with quality assurance; (ii) reliability and structural durability with extended service life and (iii) operability over a wide range. Results from several systems-theoretic disciplines, such as probabilistic robust control (PRC), damage mitigating control (DMC), health and usage monitoring (HUM) and discrete event supervisory (DES) decision and control have been synergistically combined to achieve the above goal. The proposed decision and control system is hierarchically structured with two-tier architecture. The lower tier incorporates continuouslyvarying control that is designed using a combination of PRC and DMC, and the upper tier is designed to provide information and intelligence through DES decision and control that monitors the system response for detection and mitigation of anomalous behaviour, performance degradation and potential degradation of structural durability. To assure desired quality at permissible levels of risk as well as under different operating conditions, the PRC at the lower tier makes a trade off between robustness and performance, while damage mitigation in critical structures is achieved via DMC that also facilitates health and usage monitoring of the complex system. Based on the information derived from the observed time series data, the DES decision and control at the upper tier may decide to switch, in real time, to one control module from another in order to satisfy the specified performance and safety requirements. The switching actions are executed at the lower tier. The integrated system, including the proposed decision and control architecture, has been tested and validated on a rotorcraft simulation test bed.
منابع مشابه
Integrated Intelligent Information and Analytical System of Management of a Life Cycle of Products of Transport Companies
Developed an integrated intellectual computerized system of ecological-economic monitoring, modeling, and managing the life cycle of the products of technogenic enterprises of transport engineering, which is presented in the form of a 3-equation structure, functioning in conditions of instability. The proposed paradigm system life cycle management applicable to any other control system of large...
متن کاملHomeostasis and Homeorhesis: Sustaining Order and Normalcy in Human-engineered Complex Systems
This short paper introduces the concepts of biological homeostasis and homeorhesis in decision and control of human-engineered complex systems. The objective is to sustain order and normalcy under both anticipated and unanticipated faults and disturbances.
متن کاملAn integrated multi-criteria decision-making methodology based on type-2 fuzzy sets for selection among energy alternatives in Turkey
Energy is a critical factor to obtain a sustainable development for countries and governments. Selection of the most appropriate energy alternative is a completely critical and a complex decision making problem. In this paper, an integrated multi-criteria decision-making (MCDM) methodology based on type-2 fuzzy sets is proposed for selection among energy alternatives. Then a roadmap has been cr...
متن کاملApplication of an integrated decision-making approach based on FDAHP and PROMETHEE for selection of optimal coal seam for mechanization; A case study of the Tazareh coal mine complex, Iran
Increasing the production rate and minimizing the related costs, while optimizing the safety measures, are nowadays’ most important tasks in the mining industry. To these ends, mechanization of mines could be applied, which can result in significant cost reductions and higher levels of profitability for underground mines. The potential of a coal mine mechanization depends on some important fact...
متن کاملConnections, Communication and Collaboration in Healthcare’s Complex Adaptive Systems; Comment on “Using Complexity and Network Concepts to Inform Healthcare Knowledge Translation”
A more sophisticated understanding of the unpredictable, disorderly and unstable aspects of healthcare organisations is developing in the knowledge translation (KT) literature. In an article published in this journal, Kitson et al introduced a new model for KT in healthcare based on complexity theory. The Knowledge Translation Complexity Network Model (KTCNM) provides a fresh perspective by mak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. General Systems
دوره 35 شماره
صفحات -
تاریخ انتشار 2006